Sains Malaysiana 54(3)(2025): 943-958

http://doi.org/10.17576/jsm-2025-5403-24

 

Dosimetric Evaluation of 3D-Printed Polylactic Acid (PLA) Anthropomorphic Radiotherapy Head Phantom using Gafchromic EBT-XD Films, OSLD NanoDot and TLD-100

(Penilaian Dosimetrik Kepala Fantom Radioterapi Antropomorfik Asid Polilaktik Bercetak 3D (PLA) menggunakan Filem Gafchromic EBT-XD, OSLD NanoDot dan TLD-100)

 

NOOR NABILAH TALIK SISIN1,7, NUR EMIRAH MOHD ZAIN2, NOR ARINA ISAMAIL2, REDUAN ABDULLAH3, MUHAMMAD AFIQ KHAIRIL ANUAR4, NUR HAMIZAH MOHD ZAINUDIN5, AHMAD BAZLIE ABDUL KADIR6, ASHRANI AIZZUDDIN ABD RAHNI8, WAN NORDIANA RAHMAN1,7,*, AML ALMUTERY1,9 & RAIZULNASUHA ABD RASHID10

 

1Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

3Oncology, Radiotherapy and Nuclear Medicine Department, Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

4Department of Health Professional, Faculty of Health Science, Management & Science University, 40100 Shah Alam, Selangor, Malaysia

5Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu Malaysia

6Department of Metrology, Nuclear Malaysia Agency, 43000 Bangi, Selangor, Malaysia

7Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

8Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

9Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, Shaqra 11911, Saudi Arabia

10Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 18 Ogos 2024/Diterima: 28 November 2024

 

Abstract

Recently, additive manufacturing or 3-dimensional (3D) printing has been utilized to create low-cost and customized radiotherapy phantoms for quality assurance and radiation dosimetry. In this study, the head phantom was fabricated by scanning a standard RANDO® head phantom using a Kinect® Xbox 360® and printed using polylactic acid (PLA) with 100% infill. The 3D-printed anthropomorphic head phantoms underwent CT simulation, treatment planning, and treatment delivery, similar to the patient setup in radiotherapy with a whole brain target. Irradiation of the phantoms were delivered with a single fraction of 400 cGy using 6 MV photon beam energy. The absorbed dose was measured with three dosimeters: GafChromic EBT-XD film, TLD-100, and OSLD NanoDot. Gamma analysis of EBT-XD films indicated a 30% dose difference for the irradiation’s pass rate of 3D printed head phantom and RANDO® phantom compare to TPS dose calculation. TLD's measurement of the 3D printed phantom resulted in 99% similarity to the TPS calculation and RANDO® phantom TLD’s results. Meanwhile, the percentage dose difference between OSLD reading of 3D printed phantom and TPS calculation was 8.1%. Therefore, this study demonstrates the feasibility of the 3D-printed head RP as an alternative phantom to RANDO® head RP. Further improvement in the phantom design details might enhance the dosimetry outcome and accuracy.

Keywords: Anthropomorphic; EBT; PLA; OSLD; TLD; 3D printing

 

Abstrak

Mutakhir ini, proses pembuatan bahan tambahan atau lebih dikenali sebagai percetakan 3D telah diaplikasikan dalam penghasilan fantom radioterapi berkos rendah untuk tujuan jaminan kualiti dan dosimetri radiasi. Dalam penyelidikan ini, fabrikasi model kepala fantom telah dilakukan berpandu kepada model kepala fantom RANDO® mengunakan Kinect® Xbox 360® dan dicetak menggunakan bahan polilaktik asid (PLA) dengan pengisian 100%. Model percetakan 3D antropomorfik kepala fantom yang dihasilkan akan melalui proses simulasi CT, perancangan rawatan, penghantaran rawatan yang serupa seperti mana rawatan kepada pesakit dengan sasaran tertumpu kepada keseluruhan otak. Penyinaran fantom telah dilakukan dengan pecahan tunggal 400 cGy menggunakan tenaga pancaran foton 6 MV. Dos terserap diukur dengan menggunakan tiga jenis dosimeter iaitu filem GafChromic EBT-XD, TLD-100 dan OSLD NanoDot. Analisis indeks Gamma menggunakan filem GafChromic EBT-XD menunjukkan 30% perbezaan dos bagi kadar radiasi yang dibenarkan untuk fantom percetakan 3D dan fantom RANDO® dengan pengiraan dos TPS. Manakala pengukuran TLD menunjukkan keputusan 99% kebersamaan dengan pengiraan TPS bagi perbandingan dengan fantom RANDO®. Sementara itu perbezaan dos antara bacaan OSLD bagi fantom percetakan 3D dan TPS adalah sebanyak 8.1%. Oleh itu, kajian ini telah menunjukkan kebolehlaksanaan fantom percetakan 3D sebagai alternatif kepada fantom radioterapi kepala RANDO®. Penambahbaikan reka bentuk secara lebih terperinci boleh meningkatkan hasil dan ketepatan dosimetri.

Kata kunci: Antropomofik; EBT; OSLD; percetakan 3D; PLA; TLD

 

RUJUKAN

Ahmad, M.A., Mustaza, S.M., Mokri, S.S., Azmi, N.A., Ahmad, R., Ramli, R., Rahman, W.N.W.A. & Abd Rahni, A.A. 2021. Development of a 3D printed motion mechanism for a 4D respiratory motion phantom. 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). pp. 132-135. DOI: 10.1109/IECBES48179.2021.9398831

Ahmadi, M., Ramezani, A.M., Hariri, T.S. & Azma, Z. 2021. Manufacturing and evaluation of a multi-purpose Iranian head and neck anthropomorphic phantom called MIHAN. Medical & Biological Engineering & Computing 59: 1611-1620. https://doi.org/10.1007/s11517-021-02394-y

Alssabbagh, M., Tajuddin, A.A., Abdul Manap, M.b. & Zainon, R. 2017. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. International Journal of Advanced and Applied Sciences 4(9): 168-173. https://doi.org/10.21833/ijaas.2017.09.024

Alzahrani, M., O’Hara, C., Bird, D., Baldwin, J.P., Naisbit, M., Teh, I., Broadbent, D.A., Al-Qaisieh, B., Johnstone, E. & Speight, R. 2024. Optimisation of cone beam CT radiotherapy imaging protocols using a novel 3D printed head and neck anthropomorphic phantom. Physics in Medicine & Biology 69(21). DOI 10.1088/1361-6560/ad88d2

Andres, C., Del Castillo, A., Tortosa, R., Alonso, D. & Barquero, R. 2010. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Medical Physics 37(12): 6271-6278. https://doi.org/10.1118/1.3512792

Arjomandy, B., Tailor, R., Anand, A., Sahoo, N., Gillin, M., Prado, K. & Vicic, M. 2010. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Medical Physics 37(5): 1942-1947. https://doi.org/10.1118/1.3373523

Attix, F.H. 2004. Introduction to Radiological Physics and Radiation Dosimetry. KGaA, Weinheim: Wiley-VCH Verlag GmbH & Co.

Babaloui, S., Jafari, S., Polak, W., Ghorbani, M., Hubbard, M.W., Lohstroh, A., Shirazi, A. & Jaberi, R. 2020. Development of a novel and low-cost anthropomorphic pelvis phantom for 3D dosimetry in radiotherapy. Journal of Contemporary Brachytherapy 12(5): 470-479.  https://doi.org/10.5114/jcb.2020.100380

Borca, V.C., Pasquino, M., Russo, G., Grosso, P., Cante, D., Sciacero, P., Girelli, G., Porta, M.R.L. & Tofani, S. 2013. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. Journal of Applied Clinical Medical Physics 14(2): 158-171. https://doi.org/10.1120/jacmp.v14i2.4111

Burleson, S., Baker, J., Hsia, A.T. & Xu, Z. 2015. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. Journal of Applied Clinical Medical Physics 16: 166-178. https://doi.org/10.1120/jacmp.v16i3.5247

Bentz, B.Z., Chavan, A.V., Lin, D., Tsai, E.H. & Webb, K.J. 2016. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging. Applied Optics 55(2): 280-287. https://doi.org/10.1364/AO.55.000280

Bogmis, A.I., Popa, A.R., Adam, D., Ciocâltei, V., Guraliuc, N.A., Ciubotaru, F. & Chiricuță, I.C. 2020. Complex target volume delineation and treatment planning in radiotherapy for malignant pleural mesothelioma (MPM). International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 9(3): 125-140. DOI: 10.4236/ijmpcero.2020.93012

Bustillo, J.P., Tumlos, R. & Remoto, R.Z. 2019. Intensity Modulated Radiotherapy (IMRT) phantom fabrication using Fused Deposition Modeling (FDM) 3D printing technique. World Congress on Medical Physics and Biomedical Engineering 2018. Singapore: Springer. pp. 509-515.

Bustillo, J.P.O., Posadas, J.R.D., Mata, J.L., Inocencio, E.T., Rosenfeld, A.B. & Lerch, M.L.F. 2024a. 3D printed heterogeneous paediatric head and adult thorax phantoms for linear accelerator radiotherapy quality assurance: From fabrication to treatment delivery. Biomedical Physics & Engineering Express 10(5): 055037. DOI 10.1088/2057-1976/ad6f13

Bustillo, J.P.O., Paino, J., Barnes, M., Cayley, J., de Rover, V., Cameron, M., Engels, E.E., Tehei, M., Beirne, S., Wallace, G.G. & Rosenfeld, A.B., 2024b. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Physics in Medicine & Biology 69(14): 145003. DOI 10.1088/1361-6560/ad5b48

Craft, D.F. & Howell, R.M. 2017. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. Journal of Applied Clinical Medical Physics 18: 285-292. https://doi.org/10.1002/acm2.12162

Chen, C.Y., Liu, K.C., Chen, H.H. & Pan, L.K. 2010. Optimizing the TLD-100 readout system for various radiotherapy beam doses using the Taguchi methodology. Applied Radiation and Isotopes 68: 481-488. https://doi.org/10.1016/j.apradiso.2009.12.001

Dawood, A., Marti, B.M., Sauret-Jackson, V. & Darwood, A. 2015. 3D printing in dentistry. British Dental Journal 219: 521-529. https://doi.org/10.1038/sj.bdj.2015.914

Devic, S., Seuntjens, J., Sham, E., Podgorsak, E.B., Schmidtlein, C.R., Kirov, A.S. & Soares, C.G. 2005. Precise radiochromic film dosimetry using a flat‐bed document scanner. Medical Physics 32(7 Part1): 2245-2253. https://doi.org/10.1118/1.1929253

DeWerd, L.A. & Kissick, M. 2014. The Phantoms of Medical and Health Physics: Devices for Research and Development. Berlin: Springer;

Ehler, E.D., Barney, B.M., Higgins, P.D. & Dusenbery, K.E. 2014. Patient specific 3D printed phantom for IMRT quality assurance. Physics in Medicine & Biology 59: 5763-5773. https://doi.org/10.1088/0031-9155/59/19/5763

Frigo, S.P. 2014. Radiation therapy dosimetry phantoms. In The Phantoms of Medical and Health Physics: Devices for Research and Development, edited by DeWerd, L.A. & Kissick, M. New York: Springer Science Business Media. pp. 17-38.

García‐Garduño, O.A., Rodríguez‐Ponce, M., Gamboa‐deBuen, I., Rodríguez‐Villafuerte, M., Galván De La Cruz, O.O. & Rivera‐Montalvo, T. 2014. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery. Medical Physics 41(9): 092101. https://doi.org/10.1118/1.4892176.

Gear, J.I., Cummings, C., Craig, A.J., Divoli, A., Long, C.D., Tapner, M. & Flux, G.D. 2016. Abdo-Man: A 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Physics 3: 17. https://doi.org/10.1186/s40658-016-0151-6

Harris, C.K., Elson, H.R., Lamba, M.A.S. & Foster, A.E. 1997. A comparison of the effectiveness of thermoluminescent crystals LiF:Mg,Ti, and LiF:Mg,Cu,P for clinical dosimetry. Medical Physics 24: 1527-1529. https://doi.org/10.1118/1.598042

Hoskin, P. & Alonzi, R. 2016. Imaging for radiotherapy planning. Radiology Key. https://radiologykey.com/imaging-for-radiotherapy-planning/. (Accessed on 10 Nov 2022).

Howard, M.E., Herman, M.G. & Grams, M.P. 2020. Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS ONE 15: e0233562. https://doi.org/10.1371/journal.pone.0233562

Izak-Biran, T., Malchi, S., Shamai, Y. & Alfassi, Z.B. 1996. Low pre- and post-irradiation fading of LiF:Mg, Ti (TLD-100, TLD-600, TLD-700) using a preheat technique. Radiation Protection Dosimetry 64: 269-274. https://doi.org/10.1093/oxfordjournals.rpd.a031583

Jahnke, P., Schwarz, S., Ziegert, M., Schwarz, F.B., Hamm, B. & Scheel, M. 2019. Based 3D printing of anthropomorphic CT phantoms: Feasibility of two construction techniques. European Radiology 29: 1384-1390. https://doi.org/10.1007/s00330-018-5654-1

Ju, S.G., Han, Y., Kum, O., Cheong, K.H., Shin, E.H., Shin, J.S., Kim, J.S. & Ahn, Y.C. 2010. Comparison of film dosimetry techniques used for quality assurance of intensity modulated radiation therapy. Medical Physics 37(6Part1): 2925-2933. https://doi.org/10.1118/1.3395574

Kadoya, N., Abe, K., Nemoto, H., Sato, K., Ieko, Y., Ito, K., Dobashi, S., Takeda, K. & Jingu, K. 2019. Evaluation of a 3D-printed heterogeneous anthropomorphic head and neck phantom for patient-specific quality assurance in intensity-modulated radiation therapy. Radiological Physics and Technology 12: 351-356.  https://doi.org/10.1007/s12194-019-00527-5

Kairn, T., Crowe, S.B. & Markwell, T. 2015. Use of 3D printed materials as tissue-equivalent phantoms. In World Congress on Medical Physics and Biomedical Engineering 2015, edited by Jaffray, D. IFMBE Proceedings. Toronto: Springer, Cham. pp. 728-731.

Kalra, A. 2018. Developing FE human models from medical images. In Basic Finite Element Method as Applied to Injury Biomechanics, edited by Yang, K.H. London: Elsevier. pp. 389-415. https://doi.org/10.1016/B978-0-12-809831-8.00009-X

Kamalian, S., Lev, M.H. & Gupta, R. 2016. Computed tomography imaging and angiography – principles. In Handbook of Clinical Neurology. edited by Masdeu, J.C. & González, R.G. Amsterdam: Elsevier B.V. pp. 3-20. https://doi.org/10.1016/B978-0-444-53485-9.00001-5

Kamomae, T., Shimizu, H., Nakaya, T., Okudaira, K., Aoyama, T., Oguchi, H., Komori, M., Kawamura, M., Ohtakara, K., Monzen, H. & Itoh, Y. 2017. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Physica Medica 44: 205-211. https://doi.org/10.1016/j.ejmp.2017.10.005

Khan, F.M. 2014. Measurement of ionizing radiation. In Khan’s The Physics of Radiation Therapy, 5th ed., edited by Khan, F.M. & Gibbons, J.P. Philadelphia: Lippincott Williams & Wilkins. p. 76.

Lev, M.H. & González, R.G. 2002. CT angiography and CT perfusion imaging. In Brain Mapping: The Methods, edited by Toga, A. & Mazziotta, J. 2nd ed. San Diego: Academic Press. pp. 427-484.

Madamesila, J., McGeachy, P., Villarreal Barajas, J.E. & Khan, R. 2016. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy. Physica Medica 32: 242-247. https://doi.org/10.1016/j.ejmp.2015.09.013

Mann, P., Witte, M., Moser, T., Lang, C., Runz, A., Johnen, W., Berger, M., Biederer, J. & Karger, C.P. 2017. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom. Physics in Medicine & Biology 62(2): 573. DOI 10.1088/1361-6560/aa51b1

Molineu, A., Hernandez, N., Nguyen, T., Ibbott, G. & Followill, D. 2013. Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom. Medical Physics 40(2): 022101. https://doi.org/10.1118/1.4773309

Molineu, A., Followill, D.S., Balter, P.A., Hanson, W.F., Gillin, M.T., Huq, M.S., Eisbruch, A. & Ibbott, G.S. 2005. Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the Radiation Therapy Oncology Group. International Journal of Radiation Oncology Biology Physics 63(2): 577-583. https://doi.org/10.1016/j.ijrobp.2005.05.021

Mukwada, G., Hirst, A., Rowshanfarzad, P. & Ebert, M.A. 2024. Development of a 3D printed phantom for commissioning and quality assurance of multiple brain targets stereotactic radiosurgery. Physical and Engineering Sciences in Medicine 47(2): 455-463. https://doi.org/10.1007/s13246-023-01374-w

Musa, Y., Hashim, S., Karim, M.K.A., Bakar, K.A., Ang, W.C. & Salehhon, N. 2017. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range. Journal of Physics: Conference Series 851(1): 012001. DOI 10.1088/1742-6596/851/1/012001

Murthy, K.V.R. 2013. Applications of TLDs in radiation dosimetry. Defect and Diffusion Forum 341: 211-230. https://doi.org/10.4028/www.scientific.net/DDF.341.211

Niroomand‐Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., Galvin, J.M., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E. & Soares, C.G. 1998. Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Medical Physics 25(11): 2093-2115. https://doi.org/10.1118/1.598407

Oh, S.A., Kim, M.J., Kang, J.S., Hwang, H.S., Kim, Y.J., Kim, S.H., Park, J.W., Yea, J.W. & Kim, S.K. 2017. Feasibility of fabricating variable density phantoms using 3D printing for quality assurance (QA) in radiotherapy. Progress in Medical Physic 28(3): 106-110. https://doi.org/10.14316/pmp.2017.28.3.106

Orton, A., Gordon, J., Vigh, T., Tonkin, A. & Cannon, G. 2017. Differences in parotid dosimetry and expected normal tissue complication probabilities in whole brain radiation plans covering C1 versus C2. Cureus 9(5): e1217. doi: 10.7759/cureus.1217

Piperdi, H., Portal, D., Neibart, S.S., Yue, N.J., Jabbour, S.K. & Reyhan, M. 2021. Adaptive radiation therapy in the treatment of lung cancer: An overview of the current state of the field. Frontiers in Oncology 11: 770382. https://doi.org/10.3389/fonc.2021.770382

Park, J.W., Oh, S.A., Yea, J.W. & Kang, M.K. 2017. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS ONE 12: e0177562. https://doi.org/10.1371/journal.pone.0177562

Radaideh, K.M., Matalqah, L.M., Tajuddin, A.A., Lee, W.F., Bauk, S. & Munem, E.E.A. 2013. Development and evaluation of a Perspex anthropomorphic head and neck phantom for three dimensional conformal radiation therapy (3D-CRT). Journal of Radiotherapy in Practice 12(3): 272-280. doi:10.1017/S1460396912000453

Ramos, E. 2012. Kinect basics. Arduino and Kinect Projects. Berkeley: Apress. pp 23-34.

Rahman, M. 2017. Beginning Microsoft Kinect for Windows SDK 2.0. Berkeley: Apress.

Rahman, W.N., Abdul Razak, H., Sisin, N.N.T., Abdullah, R., Abdullah, A.N. & Rahni, A.A.A. 2023. Customized 3D-Printed TPU Slab Phantom for 6 MV Photon Beams Radiotherapy. Proceedings of the 19th Asian Workshop on Polymer Processing (AWPP 2022). AWPP 2022. Springer Proceedings in Materials, vol 24. Singapore: Springer. https://doi.org/10.1007/978-981-99-2015-0_7

Rivard, M.J., Coursey, B.M., DeWerd, L.A., Hanson, W.F., Saiful Huq, M., Ibbott, G.S., Mitch, M.G., Nath, R. & Williamson, J.F. 2004. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Medical Physics 31(3): 633-674. https://doi.org/10.1118/1.1646040

Salmanian, S., Vaez Zade, V., Sanei, M. & Sharafi, A.A. 2018. The measurement of absorbed dose in thyroid, parathyroid, eye lens and gonads in radiotherapy of head and neck epithelial tumors by thermoluminescent dosimeter (TLD) method. Frontiers in Biomedical Technologies 5: 69-73.

Sands, G., Clark, C.H. & McGarry, C.K. 2023. A review of 3D printing utilisation in radiotherapy in the United Kingdom and Republic of Ireland. Physica Medica 115: 103143. https://doi.org/10.1016/j.ejmp.2023.103143

Steinmann, A., Alvarez, P., Lee, H., Court, L., Stafford, R., Sawakuchi, G., Wen, Z., Fuller, C.D. & Followill, D. 2020. MRIgRT head and neck anthropomorphic QA phantom: Design, development, reproducibility, and feasibility study. Medical Physics 47(2): 604-613. https://doi.org/10.1002/mp.13951

Soares, C.G., Trichter, S. & Devic, S. 2009. Radiochromic film. In Clinical Dosimetry Measurements in Radiotherapy, edited by Rogers, D.W.O. & Cygler, J.E. (2009 AAPM Summer School). AAPM, College Park. p. 1128.

Tagiling, N. 2019. Dosimetric characterisation of GafchromicTM EBT3 films for nanoparticles-enhanced photon, electron, high dose rate 192-Ir and proton radiotherapy. MSc, Universiti Sains Malaysia (Unpublished).

Tino, R.B., Yeo, A.U., Brandt, M., Leary, M. & Kron, T. 2022. A customizable anthropomorphic phantom for dosimetric verification of 3D‐printed lung, tissue, and bone density materials. Medical Physics 49(1): 52-69. https://doi.org/10.1002/mp.15364

Thomas, T.H.M., Devakumar, D., Purnima, S. & Ravindran, B.P. 2009. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning. Physics in Medicine & Biology 54(7): 2067. DOI 10.1088/0031-9155/54/7/014

Yusuf, M., Saoudi, A., Alothmany, N., Alothmany, D., Natto, S., Natto, H., Molla, N.I., Mail, N., Hussain, A. & Kinsara, A.A. 2014. Characterization of the optically stimulated luminescence nanoDot for CT dosimetry. Life Science Journal 11(2): 445-450.

Zain, N.E. & Rahman, W.N. 2020. Three-dimensional (3D) scanning using Microsoft® Kinect® Xbox 360® scanner for fabrication of 3D printed radiotherapy head phantom. Journal of Physics: Conference Series 1497(1): 012005. DOI 10.1088/1742-6596/1497/1/012005

Zain, N.E.M., Jais, U., Abdullah, R. & Rahman, W.N.W.A. 2019. Dosimetric characterization of customized PLA phantom for radiotherapy. Jurnal Sains Nuklear Malaysia 31(2): 1-6.

Zhang, F., Zhang, H., Zhao, H., He, Z., Shi, L., He, Y., Ju, N., Rong, Y. & Qiu, J. 2019. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quantitative Imaging in Medicine and Surgery 9(1): 94-100. doi: 10.21037/qims.2018.08.01

 

*Pengarang untuk surat-menyurat; email: wnordiana@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

sebelumnya