Sains Malaysiana 54(3)(2025): 943-958
http://doi.org/10.17576/jsm-2025-5403-24
Dosimetric Evaluation of 3D-Printed Polylactic Acid (PLA) Anthropomorphic Radiotherapy
Head Phantom using Gafchromic EBT-XD Films, OSLD NanoDot and TLD-100
(Penilaian Dosimetrik Kepala Fantom Radioterapi Antropomorfik Asid Polilaktik Bercetak 3D (PLA) menggunakan Filem Gafchromic EBT-XD, OSLD NanoDot dan TLD-100)
NOOR
NABILAH TALIK SISIN1,7, NUR EMIRAH MOHD ZAIN2, NOR ARINA
ISAMAIL2, REDUAN ABDULLAH3, MUHAMMAD AFIQ KHAIRIL ANUAR4,
NUR HAMIZAH MOHD ZAINUDIN5, AHMAD BAZLIE ABDUL KADIR6,
ASHRANI AIZZUDDIN ABD RAHNI8, WAN NORDIANA RAHMAN1,7,*,
AML ALMUTERY1,9 & RAIZULNASUHA ABD RASHID10
1Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
3Oncology, Radiotherapy and Nuclear Medicine
Department, Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
4Department of Health Professional, Faculty of Health
Science, Management & Science University, 40100 Shah Alam,
Selangor, Malaysia
5Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu Malaysia
6Department of Metrology, Nuclear Malaysia Agency,
43000 Bangi, Selangor, Malaysia
7Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
8Department of Electrical, Electronic and Systems Engineering, Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
9Physics
Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, Shaqra 11911, Saudi Arabia
10Centre
for Diagnostic Nuclear Imaging, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 18 Ogos 2024/Diterima: 28 November 2024
Abstract
Recently,
additive manufacturing or 3-dimensional (3D) printing has been utilized to
create low-cost and customized radiotherapy phantoms for quality assurance and
radiation dosimetry. In this study, the head phantom was fabricated by scanning
a standard RANDO® head phantom using a Kinect® Xbox 360® and printed using
polylactic acid (PLA) with 100% infill. The 3D-printed anthropomorphic head
phantoms underwent CT simulation, treatment planning, and treatment delivery,
similar to the patient setup in radiotherapy with a whole brain target. Irradiation of the phantoms were delivered with a single
fraction of 400 cGy using 6 MV photon beam energy. The absorbed dose was measured with three dosimeters: GafChromic EBT-XD film, TLD-100, and OSLD NanoDot. Gamma analysis of EBT-XD films indicated a 30%
dose difference for the irradiation’s pass rate of 3D printed head phantom and RANDO®
phantom compare to TPS dose calculation. TLD's measurement of the 3D printed
phantom resulted in 99% similarity to the TPS calculation and RANDO® phantom
TLD’s results. Meanwhile, the percentage dose difference between OSLD reading
of 3D printed phantom and TPS calculation was 8.1%. Therefore, this study
demonstrates the feasibility of the 3D-printed head RP as an alternative
phantom to RANDO® head RP. Further improvement in the phantom design details
might enhance the dosimetry outcome and accuracy.
Keywords:
Anthropomorphic; EBT; PLA; OSLD; TLD; 3D printing
Abstrak
Mutakhir ini, proses pembuatan bahan tambahan atau lebih dikenali sebagai percetakan 3D telah diaplikasikan dalam penghasilan fantom radioterapi berkos rendah untuk tujuan jaminan kualiti dan dosimetri radiasi. Dalam penyelidikan ini, fabrikasi model kepala fantom telah dilakukan berpandu kepada model kepala fantom RANDO® mengunakan Kinect® Xbox 360® dan dicetak menggunakan bahan polilaktik asid (PLA) dengan pengisian 100%. Model percetakan 3D antropomorfik kepala fantom yang dihasilkan akan melalui proses simulasi CT, perancangan rawatan, penghantaran rawatan yang serupa seperti mana rawatan kepada pesakit dengan sasaran tertumpu kepada keseluruhan otak. Penyinaran fantom telah dilakukan dengan pecahan tunggal 400 cGy menggunakan tenaga pancaran foton 6 MV. Dos terserap diukur dengan menggunakan tiga jenis dosimeter iaitu filem GafChromic EBT-XD, TLD-100 dan OSLD NanoDot. Analisis indeks Gamma menggunakan filem GafChromic EBT-XD menunjukkan 30% perbezaan dos bagi kadar radiasi yang dibenarkan untuk fantom percetakan 3D dan fantom RANDO® dengan pengiraan dos TPS. Manakala pengukuran TLD menunjukkan keputusan 99% kebersamaan dengan pengiraan TPS bagi perbandingan dengan fantom RANDO®. Sementara itu perbezaan dos antara bacaan OSLD bagi fantom percetakan 3D dan TPS adalah sebanyak 8.1%. Oleh itu, kajian ini telah menunjukkan kebolehlaksanaan fantom percetakan 3D sebagai alternatif kepada fantom radioterapi kepala RANDO®. Penambahbaikan reka bentuk secara lebih terperinci boleh meningkatkan hasil dan ketepatan dosimetri.
Kata kunci: Antropomofik; EBT; OSLD; percetakan 3D; PLA; TLD
RUJUKAN
Ahmad, M.A., Mustaza,
S.M., Mokri, S.S., Azmi, N.A., Ahmad, R., Ramli, R.,
Rahman, W.N.W.A. & Abd Rahni, A.A. 2021. Development of a 3D printed motion
mechanism for a 4D respiratory motion phantom. 2020 IEEE-EMBS Conference on
Biomedical Engineering and Sciences (IECBES). pp. 132-135. DOI:
10.1109/IECBES48179.2021.9398831
Ahmadi, M., Ramezani, A.M., Hariri,
T.S. & Azma, Z. 2021. Manufacturing and evaluation of a multi-purpose
Iranian head and neck anthropomorphic phantom called MIHAN. Medical & Biological Engineering &
Computing 59: 1611-1620. https://doi.org/10.1007/s11517-021-02394-y
Alssabbagh, M., Tajuddin, A.A., Abdul Manap, M.b. & Zainon, R. 2017. Evaluation of nine 3D
printing materials as tissue equivalent materials in terms of mass attenuation
coefficient and mass density. International
Journal of Advanced and Applied Sciences 4(9): 168-173. https://doi.org/10.21833/ijaas.2017.09.024
Alzahrani, M., O’Hara, C., Bird, D., Baldwin, J.P., Naisbit, M., Teh, I., Broadbent,
D.A., Al-Qaisieh, B., Johnstone, E. & Speight, R.
2024. Optimisation of cone beam CT radiotherapy
imaging protocols using a novel 3D printed head and neck anthropomorphic
phantom. Physics in Medicine & Biology 69(21). DOI 10.1088/1361-6560/ad88d2
Andres, C., Del Castillo, A.,
Tortosa, R., Alonso, D. & Barquero, R. 2010. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Medical Physics 37(12): 6271-6278.
https://doi.org/10.1118/1.3512792
Arjomandy, B., Tailor, R., Anand, A., Sahoo, N., Gillin, M., Prado,
K. & Vicic, M. 2010. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron,
and proton beam energies. Medical Physics 37(5): 1942-1947.
https://doi.org/10.1118/1.3373523
Attix, F.H. 2004. Introduction to Radiological Physics and
Radiation Dosimetry. KGaA, Weinheim: Wiley-VCH
Verlag GmbH & Co.
Babaloui, S., Jafari, S., Polak, W., Ghorbani, M., Hubbard, M.W., Lohstroh, A., Shirazi, A. & Jaberi, R. 2020.
Development of a novel and low-cost anthropomorphic pelvis phantom for 3D
dosimetry in radiotherapy. Journal of Contemporary Brachytherapy 12(5):
470-479. https://doi.org/10.5114/jcb.2020.100380
Borca, V.C., Pasquino, M., Russo, G.,
Grosso, P., Cante, D., Sciacero, P., Girelli, G., Porta, M.R.L. & Tofani, S. 2013.
Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose
verification. Journal of Applied Clinical Medical Physics 14(2):
158-171. https://doi.org/10.1120/jacmp.v14i2.4111
Burleson, S., Baker, J., Hsia, A.T. & Xu, Z.
2015. Use of 3D printers to create a patient-specific 3D bolus for external
beam therapy. Journal of Applied Clinical
Medical Physics 16: 166-178. https://doi.org/10.1120/jacmp.v16i3.5247
Bentz, B.Z., Chavan, A.V., Lin, D.,
Tsai, E.H. & Webb, K.J. 2016. Fabrication and application of heterogeneous
printed mouse phantoms for whole animal optical imaging. Applied Optics 55(2):
280-287. https://doi.org/10.1364/AO.55.000280
Bogmis, A.I., Popa, A.R., Adam, D., Ciocâltei,
V., Guraliuc, N.A., Ciubotaru,
F. & Chiricuță, I.C. 2020. Complex
target volume delineation and treatment planning in radiotherapy for malignant
pleural mesothelioma (MPM). International Journal of Medical Physics,
Clinical Engineering and Radiation Oncology 9(3): 125-140. DOI:
10.4236/ijmpcero.2020.93012
Bustillo, J.P., Tumlos, R.
& Remoto, R.Z. 2019. Intensity Modulated
Radiotherapy (IMRT) phantom fabrication using Fused Deposition Modeling (FDM)
3D printing technique. World Congress on
Medical Physics and Biomedical Engineering 2018. Singapore: Springer. pp.
509-515.
Bustillo, J.P.O., Posadas, J.R.D.,
Mata, J.L., Inocencio, E.T., Rosenfeld, A.B. & Lerch, M.L.F. 2024a. 3D
printed heterogeneous paediatric head and adult
thorax phantoms for linear accelerator radiotherapy quality assurance: From
fabrication to treatment delivery. Biomedical Physics & Engineering
Express 10(5): 055037. DOI 10.1088/2057-1976/ad6f13
Bustillo, J.P.O., Paino, J., Barnes,
M., Cayley, J., de Rover, V., Cameron, M., Engels, E.E., Tehei, M., Beirne, S.,
Wallace, G.G. & Rosenfeld, A.B., 2024b. Design, construction, and dosimetry
of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation
therapy quality assurance. Physics in Medicine & Biology 69(14): 145003.
DOI 10.1088/1361-6560/ad5b48
Craft, D.F. & Howell, R.M. 2017. Preparation and
fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific
radiotherapy phantom. Journal of Applied
Clinical Medical Physics 18: 285-292. https://doi.org/10.1002/acm2.12162
Chen, C.Y., Liu, K.C., Chen, H.H.
& Pan, L.K. 2010. Optimizing the TLD-100 readout system for various
radiotherapy beam doses using the Taguchi methodology. Applied Radiation and Isotopes 68: 481-488. https://doi.org/10.1016/j.apradiso.2009.12.001
Dawood, A., Marti, B.M.,
Sauret-Jackson, V. & Darwood, A. 2015. 3D printing in dentistry. British Dental Journal 219: 521-529. https://doi.org/10.1038/sj.bdj.2015.914
Devic, S., Seuntjens, J., Sham, E., Podgorsak, E.B., Schmidtlein, C.R., Kirov, A.S. & Soares, C.G. 2005. Precise radiochromic film dosimetry using a flat‐bed document scanner. Medical Physics 32(7 Part1): 2245-2253. https://doi.org/10.1118/1.1929253
DeWerd, L.A. & Kissick, M. 2014. The Phantoms of Medical and Health Physics: Devices for Research and Development. Berlin:
Springer;
Ehler, E.D., Barney, B.M., Higgins,
P.D. & Dusenbery, K.E. 2014. Patient specific 3D printed phantom for IMRT
quality assurance. Physics in Medicine
& Biology 59: 5763-5773. https://doi.org/10.1088/0031-9155/59/19/5763
Frigo,
S.P. 2014. Radiation therapy dosimetry phantoms. In The Phantoms of Medical and Health Physics: Devices
for Research and Development, edited by DeWerd,
L.A. & Kissick, M. New York: Springer Science Business
Media. pp. 17-38.
García‐Garduño, O.A., Rodríguez‐Ponce, M., Gamboa‐deBuen, I., Rodríguez‐Villafuerte, M., Galván De La Cruz, O.O. & Rivera‐Montalvo, T. 2014. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery. Medical Physics 41(9): 092101. https://doi.org/10.1118/1.4892176.
Gear, J.I., Cummings, C., Craig,
A.J., Divoli, A., Long, C.D., Tapner,
M. & Flux, G.D. 2016. Abdo-Man: A 3D-printed anthropomorphic phantom for
validating quantitative SIRT. EJNMMI Physics 3: 17. https://doi.org/10.1186/s40658-016-0151-6
Harris, C.K., Elson, H.R., Lamba, M.A.S.
& Foster, A.E. 1997. A comparison of the effectiveness of thermoluminescent crystals LiF:Mg,Ti, and LiF:Mg,Cu,P for clinical dosimetry. Medical Physics 24: 1527-1529. https://doi.org/10.1118/1.598042
Hoskin, P. & Alonzi, R. 2016. Imaging for radiotherapy planning. Radiology Key. https://radiologykey.com/imaging-for-radiotherapy-planning/. (Accessed on 10
Nov 2022).
Howard, M.E.,
Herman, M.G. & Grams, M.P. 2020. Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS ONE 15: e0233562.
https://doi.org/10.1371/journal.pone.0233562
Izak-Biran, T., Malchi,
S., Shamai, Y. & Alfassi, Z.B. 1996. Low pre- and
post-irradiation fading of LiF:Mg, Ti (TLD-100, TLD-600, TLD-700) using a preheat technique. Radiation Protection Dosimetry 64: 269-274. https://doi.org/10.1093/oxfordjournals.rpd.a031583
Jahnke, P.,
Schwarz, S., Ziegert, M., Schwarz, F.B., Hamm, B. & Scheel, M. 2019. Based
3D printing of anthropomorphic CT phantoms: Feasibility of two construction
techniques. European Radiology 29: 1384-1390. https://doi.org/10.1007/s00330-018-5654-1
Ju, S.G.,
Han, Y., Kum, O., Cheong, K.H., Shin, E.H., Shin, J.S., Kim, J.S. & Ahn,
Y.C. 2010. Comparison of film dosimetry techniques used for quality assurance
of intensity modulated radiation therapy. Medical Physics 37(6Part1):
2925-2933. https://doi.org/10.1118/1.3395574
Kadoya, N.,
Abe, K., Nemoto, H., Sato, K., Ieko, Y., Ito, K.,
Dobashi, S., Takeda, K. & Jingu, K. 2019. Evaluation of a 3D-printed
heterogeneous anthropomorphic head and neck phantom for patient-specific
quality assurance in intensity-modulated radiation therapy. Radiological
Physics and Technology 12: 351-356. https://doi.org/10.1007/s12194-019-00527-5
Kairn, T., Crowe, S.B. & Markwell, T. 2015. Use of 3D printed
materials as tissue-equivalent phantoms. In World
Congress on Medical Physics and Biomedical Engineering 2015, edited by
Jaffray, D. IFMBE Proceedings. Toronto: Springer, Cham. pp. 728-731.
Kalra, A.
2018. Developing FE human models from
medical images. In Basic
Finite Element Method as Applied to Injury Biomechanics, edited by Yang,
K.H. London: Elsevier. pp. 389-415.
https://doi.org/10.1016/B978-0-12-809831-8.00009-X
Kamalian, S., Lev, M.H. & Gupta, R. 2016. Computed tomography imaging and angiography –
principles. In Handbook of Clinical Neurology. edited by Masdeu, J.C. & González, R.G. Amsterdam: Elsevier B.V.
pp. 3-20. https://doi.org/10.1016/B978-0-444-53485-9.00001-5
Kamomae, T., Shimizu, H., Nakaya, T., Okudaira, K., Aoyama, T.,
Oguchi, H., Komori, M., Kawamura, M., Ohtakara, K., Monzen, H. & Itoh, Y. 2017. Three-dimensional
printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Physica Medica 44: 205-211. https://doi.org/10.1016/j.ejmp.2017.10.005
Khan, F.M.
2014. Measurement of ionizing
radiation. In Khan’s The Physics of
Radiation Therapy, 5th ed., edited by Khan, F.M. & Gibbons, J.P.
Philadelphia: Lippincott Williams & Wilkins. p. 76.
Lev,
M.H. & González, R.G. 2002. CT angiography
and CT perfusion imaging. In Brain Mapping: The Methods, edited
by Toga, A. & Mazziotta, J. 2nd ed. San Diego: Academic Press. pp. 427-484.
Madamesila, J.,
McGeachy, P., Villarreal Barajas, J.E. & Khan, R. 2016. Characterizing 3D
printing in the fabrication of variable density phantoms for quality assurance
of radiotherapy. Physica Medica 32: 242-247.
https://doi.org/10.1016/j.ejmp.2015.09.013
Mann, P., Witte, M., Moser,
T., Lang, C., Runz, A., Johnen, W., Berger, M., Biederer, J. & Karger, C.P. 2017. 3D dosimetric
validation of motion compensation concepts in radiotherapy using an
anthropomorphic dynamic lung phantom. Physics in Medicine & Biology 62(2):
573. DOI 10.1088/1361-6560/aa51b1
Molineu, A., Hernandez, N., Nguyen, T., Ibbott, G.
& Followill, D. 2013. Credentialing results from IMRT irradiations of an
anthropomorphic head and neck phantom. Medical Physics 40(2):
022101. https://doi.org/10.1118/1.4773309
Molineu, A., Followill, D.S., Balter, P.A.,
Hanson, W.F., Gillin, M.T., Huq, M.S., Eisbruch, A. &
Ibbott, G.S. 2005. Design and implementation of an anthropomorphic quality assurance
phantom for intensity-modulated radiation therapy for the Radiation Therapy
Oncology Group. International Journal of Radiation Oncology Biology
Physics 63(2):
577-583. https://doi.org/10.1016/j.ijrobp.2005.05.021
Mukwada, G., Hirst, A., Rowshanfarzad, P. & Ebert,
M.A. 2024. Development of a 3D printed phantom for commissioning and quality
assurance of multiple brain targets stereotactic radiosurgery. Physical and
Engineering Sciences in Medicine 47(2): 455-463. https://doi.org/10.1007/s13246-023-01374-w
Musa, Y., Hashim, S., Karim,
M.K.A., Bakar, K.A., Ang, W.C. & Salehhon, N.
2017. Response of optically stimulated luminescence dosimeters subjected to
X-rays in diagnostic energy range. Journal of Physics: Conference Series 851(1):
012001. DOI 10.1088/1742-6596/851/1/012001
Murthy, K.V.R. 2013. Applications of TLDs in radiation dosimetry. Defect and Diffusion Forum 341: 211-230. https://doi.org/10.4028/www.scientific.net/DDF.341.211
Niroomand‐Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., Galvin, J.M., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E. & Soares, C.G. 1998. Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Medical Physics 25(11): 2093-2115. https://doi.org/10.1118/1.598407
Oh, S.A., Kim, M.J., Kang, J.S., Hwang, H.S., Kim,
Y.J., Kim, S.H., Park, J.W., Yea, J.W. & Kim, S.K. 2017. Feasibility of
fabricating variable density phantoms using 3D printing for quality assurance
(QA) in radiotherapy. Progress in Medical Physic 28(3): 106-110. https://doi.org/10.14316/pmp.2017.28.3.106
Orton, A., Gordon, J., Vigh, T., Tonkin, A. &
Cannon, G. 2017. Differences in parotid dosimetry and expected normal tissue
complication probabilities in whole brain radiation plans covering C1 versus
C2. Cureus 9(5): e1217. doi: 10.7759/cureus.1217
Piperdi, H., Portal, D., Neibart, S.S., Yue, N.J., Jabbour, S.K. & Reyhan,
M. 2021. Adaptive radiation therapy in the treatment of lung cancer: An
overview of the current state of the field. Frontiers in Oncology 11:
770382. https://doi.org/10.3389/fonc.2021.770382
Park, J.W., Oh, S.A., Yea, J.W. &
Kang, M.K. 2017. Fabrication of malleable three-dimensional-printed customized
bolus using three-dimensional scanner. PLoS ONE 12: e0177562. https://doi.org/10.1371/journal.pone.0177562
Radaideh, K.M., Matalqah, L.M., Tajuddin, A.A., Lee,
W.F., Bauk, S. & Munem, E.E.A. 2013. Development and evaluation of a
Perspex anthropomorphic head and neck phantom for three
dimensional conformal radiation therapy (3D-CRT). Journal of
Radiotherapy in Practice 12(3): 272-280. doi:10.1017/S1460396912000453
Ramos, E. 2012. Kinect basics. Arduino and Kinect Projects. Berkeley: Apress. pp 23-34.
Rahman, M. 2017. Beginning
Microsoft Kinect for Windows SDK 2.0. Berkeley: Apress.
Rahman, W.N., Abdul Razak, H., Sisin,
N.N.T., Abdullah, R., Abdullah, A.N. & Rahni, A.A.A. 2023. Customized
3D-Printed TPU Slab Phantom for 6 MV Photon Beams Radiotherapy. Proceedings
of the 19th Asian Workshop on Polymer Processing (AWPP 2022). AWPP 2022.
Springer Proceedings in Materials, vol 24. Singapore: Springer. https://doi.org/10.1007/978-981-99-2015-0_7
Rivard, M.J., Coursey,
B.M., DeWerd, L.A., Hanson, W.F., Saiful Huq, M.,
Ibbott, G.S., Mitch, M.G., Nath, R. & Williamson, J.F. 2004. Update of AAPM
Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose
calculations. Medical Physics 31(3): 633-674.
https://doi.org/10.1118/1.1646040
Salmanian, S., Vaez Zade, V., Sanei, M. & Sharafi, A.A. 2018. The measurement
of absorbed dose in thyroid, parathyroid, eye lens and gonads in radiotherapy
of head and neck epithelial tumors by thermoluminescent dosimeter (TLD) method. Frontiers in
Biomedical Technologies 5: 69-73.
Sands, G., Clark, C.H. & McGarry, C.K. 2023. A
review of 3D printing utilisation in radiotherapy in
the United Kingdom and Republic of Ireland. Physica Medica 115: 103143.
https://doi.org/10.1016/j.ejmp.2023.103143
Steinmann, A., Alvarez, P., Lee, H., Court, L.,
Stafford, R., Sawakuchi, G., Wen, Z., Fuller, C.D. &
Followill, D. 2020. MRIgRT head and neck
anthropomorphic QA phantom: Design, development, reproducibility, and
feasibility study. Medical Physics 47(2): 604-613.
https://doi.org/10.1002/mp.13951
Soares, C.G., Trichter, S.
& Devic, S. 2009. Radiochromic film. In Clinical Dosimetry Measurements in
Radiotherapy, edited by Rogers,
D.W.O. & Cygler, J.E. (2009 AAPM Summer School).
AAPM, College Park. p. 1128.
Tagiling, N. 2019. Dosimetric characterisation of GafchromicTM EBT3 films for
nanoparticles-enhanced photon, electron, high dose rate 192-Ir and proton
radiotherapy. MSc, Universiti Sains Malaysia (Unpublished).
Tino, R.B., Yeo, A.U., Brandt, M., Leary, M. & Kron, T. 2022. A customizable anthropomorphic phantom for dosimetric verification of 3D‐printed lung, tissue, and bone density materials. Medical Physics 49(1): 52-69. https://doi.org/10.1002/mp.15364
Thomas, T.H.M., Devakumar, D., Purnima, S. & Ravindran,
B.P. 2009. The adaptation of megavoltage cone beam CT for use in standard
radiotherapy treatment planning. Physics in Medicine & Biology 54(7):
2067. DOI 10.1088/0031-9155/54/7/014
Yusuf, M., Saoudi, A., Alothmany,
N., Alothmany, D., Natto, S., Natto, H., Molla, N.I.,
Mail, N., Hussain, A. & Kinsara, A.A. 2014.
Characterization of the optically stimulated luminescence nanoDot for CT dosimetry. Life Science Journal 11(2): 445-450.
Zain, N.E. & Rahman, W.N. 2020.
Three-dimensional (3D) scanning using Microsoft® Kinect® Xbox 360® scanner for
fabrication of 3D printed radiotherapy head phantom. Journal of Physics: Conference Series 1497(1): 012005. DOI 10.1088/1742-6596/1497/1/012005
Zain, N.E.M., Jais, U., Abdullah, R. & Rahman, W.N.W.A.
2019. Dosimetric characterization of customized PLA phantom for radiotherapy. Jurnal Sains Nuklear Malaysia 31(2): 1-6.
Zhang, F., Zhang, H., Zhao, H., He, Z., Shi, L., He,
Y., Ju, N., Rong, Y. & Qiu, J. 2019. Design and fabrication of a
personalized anthropomorphic phantom using 3D printing and tissue equivalent
materials. Quantitative Imaging in Medicine and Surgery 9(1): 94-100. doi: 10.21037/qims.2018.08.01
*Pengarang untuk surat-menyurat; email: wnordiana@ukm.edu.my
|